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Digital technologies are transforming industry at all levels. Steel has the 
opportunity to lead all heavy industries as an early adopter of specific 
digital technologies to improve our sustainability and competitiveness. 
This column is part of AIST’s strategy to become the epicenter for steel’s 
digital transformation, by providing a variety of platforms to showcase and 
disseminate Industry 4.0 knowledge specific for steel manufacturing, from 
big-picture concepts to specific processes.

Introduction 

The Importance of Scrap 
Quality Prediction and Raw 
Material Optimization in EAF 
Steelmaking 
Steel scrap is the most important 
input material for the electric arc 
furnace (EAF) route, and the avail-
ability of well-sorted and clean 
scrap is becoming increasingly 
limited. Today, 55% of the world’s 
available steel scrap (approximately 
880 million tons) is end-of-life scrap, 
the composition of which is high-
ly uncertain. This is expected to 
increase to 65% by 2050.1 In Europe, 
more than 60% of the available scrap 
already contains more than 0.3% of 
unwanted elements that cannot be 
removed by oxidation in the EAF 
process.2 Such unwanted elements 
can only be diluted by primary iron 
sources such as direct reduced iron 
(DRI)/hot briquetted iron (HBI) or 
high-quality and expensive scrap.

Therefore, it is critical to either 
physically separate unwanted scrap 
fractions as much as possible, or to 
have accurate on-site knowledge of 
the exact properties of each type 
of scrap. These properties are the 
actual chemical composition, the 
metallic yield and the specific ener-
gy consumption of each individual 
scrap type in the scrap mix to be 
charged into the furnace. Only with 
precise knowledge of these scrap 
properties can a well-founded and 

valid optimization of the raw mate-
rial input be carried out to ensure a 
sustainably and efficiently operated 
EAF process.

In addition to predicting the 
properties of the next melt before 
the scrap is melted, an accurate 
understanding of how scrap com-
position, yield and specific energy 
change over time, combined with 
an advanced material optimization 
software, could provide answers to 
all relevant questions along the raw 
material value chain:
•  Supplier Evaluation: Are my 

suppliers delivering scrap 
according to my purchasing 
specification?

•  Scrap Characterization: 
What are the current proper-
ties of my raw materials?

•  Load Instruction: How 
should I charge my furnace 
considering the metallurgical 
processes?

•  Heat Preview: What are the 
expected heat properties con-
sidering the actual charge?

•  Overall Cost Reduction: 
How can I reduce the overall 
costs and CO2 emissions?

Current Challenges and 
Limitations of Existing 
Systems 
As of today, no technology has suf-
ficiently addressed the requirement 
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of properly determining the different properties of scrap 
such as the chemical composition, specific energy and 
metallic yield. Current technologies can be categorized 
and distinguished based on how they tackle the problem 
from several perspectives:
•  Technology that physically separates scrap (e.g., 

metallic/nonmetallic fractions).
•  Technology that performs on-line chemical analy-

sis of the scrap.
•  Technology based on computer vision models to 

identify different materials on a scrap pile or the 
conveyor belt of a shredder.

•  Technology based on regression or data-driven 
models.

The major challenges and limitations in characterizing 
different scrap properties using physical analysis methods 
are mainly due to the heterogeneity of the scrap, which 
varies greatly both within a single scrap delivery and also 
between different deliveries. In addition, these methods 
are very time-consuming and expensive and are therefore 
only performed on a random basis. Technologies based 
on camera systems and computer vision are popular, 
but the challenges and limitations are in the quality and 
quantity of the training data and the quality of the live 
images (dust, sunlight, ref lections, etc.). Finally, regres-
sion models3–5 as well as data-driven artificial intelli-
gence (AI) models are used to predict some characteristics 
of the scrap. These methods have great potential and are 
constantly being improved. However, it should be noted 
that very sophisticated AI architectures and techniques 
are often required and that there is a lack of standardiza-
tion, which is essential to improve data compatibility and 
model interoperability.

Introduction of the Proposed On-Line Scrap 
Quality Prediction System 
For any optimization process, including the charge opti-
mization of the EAF process, a sound data basis builds 
the foundation for good optimization results. A common 
practice for most steelmakers is to work with predefined 
scrap compositions and yield figures, which are used for 
creating standard charging recipes for each steel grade. 
To account for unforeseen changes in scrap composi-
tion, these recipes often include a certain safety buffer to 
remain within the specification limits of the respective 
steel grade. For example, if the grade specification allows 
a maximum copper content of 0.3 wt. % Cu, the charge 
recipe might be designed for 0.2 wt. % Cu to account for 
the compositional uncertainty of the scrap. This, however, 
requires the use of cleaner scrap, which is typically more 
expensive than scrap with a higher copper content. In a 
reality of constantly changing prices for raw materials 
and electric energy, together with increasing uncertainty 
of scrap composition and its availability, it is necessary to 
rethink the practice of working with standard charging 
practices and raw material blends and be aware of the 

impact these parameters have on cost structure and qual-
ity assurance.

This article introduces a new tool for determining 
the raw material characteristics (chemical composition, 
metallic yield and specific energy consumption) in real 
time to enable steelmakers to enter a new era of opti-
mizing the raw material usage during steelmaking. By 
combining powerful AI techniques with fundamental 
metallurgical modeling in a hybrid closed-loop approach, 
a new system has been developed that allows not only the 
scrap specific determination of tramp elements such as 
Cu or Sn, but also elements that are oxidized during the 
oxygen blowing process to enable a full-scale optimiza-
tion potential. The results of this characterization step 
can be used to guide operators in their raw material selec-
tion by showing the real-time properties of each scrap in 
the scrap yard or can be integrated with any optimization 
software to calculate the ideal raw material utilization 
along the complete production route from melting to 
casting.

Methodology and Model Development 

Description of the Model and Development 
Approach 
The lower part of Fig. 1 shows in a simplified way the real 
processes that need to be considered in the context of a 
comprehensive model. This includes the entire ordering 
and purchasing process, the delivery of different scrap 
types from different suppliers, the optimized charging 
of the furnace, and finally the melting process in the 
EAF including the relevant metallurgical work. The 
upper part of the figure schematically shows the three 
different models that have been combined in the present 
work in the form of a hybrid approach. Before describing 
the individual models and their development in detail, 
the principles of hybrid modeling are described brief ly. 
According to Kurz et al.,6 hybrid models combine first 
principles-based models with data-based models into a 
joint architecture, supporting enhanced model qualities 
such as robustness and explainability. Data-based model-
ing analyzes and models trends in data using statistical 
and machine learning methods. Neural networks, deci-
sion trees, regression models and other data-driven algo-
rithms are a few examples. Without explicit knowledge 
of the underlying physical processes, data-based models 
create predictions or judgments by learning from the pat-
terns and relationships found in the available data. First-
principles models are based on fundamental principles 
and laws that describe the underlying physics or dynam-
ics of a system. They are based on theoretical knowledge 
and frequently include mathematical equations that show 
how various variables relate to one another. Laws of phys-
ics, chemistry or engineering are examples of scientific 
concepts that constitute the foundation of first-principles 
models. The hybrid model combines the strengths of both 
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approaches. The hybrid model seeks to improve accuracy 
and resilience by combining data-driven models, which 
can capture complex patterns and nuances seen in real-
world data, with first-principles models, which give a 
solid theoretical framework and help in the incorpora-
tion of domain knowledge. This integration is especially 
beneficial when dealing with complex systems, where a 
purely data-driven or first-principles approach may have 
constraints.

For a comprehensive optimization of the scrap input to 
the EAF process, three models are needed:
•  Raw Material Characterization Model.
•  Raw Material Optimization Model.
•  EAF Process Model.

The optimization is performed by the Raw Material 
Optimization model (2) using a holistic optimization 
algorithm that considers all metallurgical processing 
units (EAF, ladle furnace (LF), vacuum degasser (VD)/
vacuum oxygen decarburization (VOD), argon oxygen 
decarburization (AOD), etc.), all relevant process vari-
ables (melt and slag chemistry, chemical and electrical 
energy, CO2 emissions, metallurgical reactions, etc.), 
boundary conditions and constraints, the input data, and 
the desired output. By combining this approach with the 
cost for materials, energy and CO2, the Raw Material 
Optimization Model determines the most efficient raw 
material mix. Since a detailed description of this model 
with practical examples has already been published7 and 
the focus of this article is on the determination of scrap 

properties, this part of the hybrid model will not be dis-
cussed in detail.

In order to better understand the need for hybrid mod-
eling to determine the most important scrap properties, 
the basic problem is schematically illustrated in Fig. 2 and 
can be explained as follows: In simple terms, there is only 
one equation, but there are many unknown variables as 
there are different types of scrap (S1, S2, etc.) charged 
into the EAF. Even if only one type of scrap is used, it is 
only possible to determine the chemical analysis of the 
scrap based on the measured chemical composition of 
the melt if the oxidized quantity is known. Since several 
different types of scrap are used, a unique mathematical 
solution to the problem is impossible. For this reason, and 
because metallurgical reactions almost always occur and 
have a significant impact on the mass balance, a hybrid 
approach combining data-based and fundamental mod-
els is the best choice.

Therefore, a data-based scrap property determination 
model (the Raw Material Characterization Model) has 
been developed that calculates the scrap-specific com-
position, metallic yield, and specific energy based on the 
measured melt pool composition and the information 
on the charged scrap type and its mass. The data-based 
model is extended with a metallurgical model to account 
for losses due to oxidation reactions (chemical yield). This 
metallurgical model calculates the number of oxidized 
elements and their energy input (chemical energy) based 
on the amount of oxygen injected. This model approach 
can be used to determine not only the chemical analy-
sis of the scrap, but also the specific electrical energy 
required to melt the scrap. In addition, by considering the 

Schematic illustration of the big picture of raw material optimization based on a hybrid approach that combines an 
artificial intelligence (AI)-based predictive model, a mathematical optimization model and a metallurgical model of 
the electric arc furnace (EAF).

Figure 1
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chemical oxidation reactions, a distinction can be made 
between chemical and physical yields. 

The approach presented here differs significantly from 
conventional data-based models, which usually work 
only on the basis of historical data and therefore cannot 
achieve the previously mentioned advantages.

Data Collection Process and Process-Relevant 
Information 
To enable real-time capability, the model was developed 
with all interfaces necessary to interact with the produc-
tion environment. It is important to note that no addi-
tional cameras, hardware or sensors are required. Input 
data for the model are the data typically available from 
process management systems, such as the furnace charge 
mix (i.e., scrap blend), melt chemistry samples and other 
measured production data. After the completion of each 
heat, these data are received by the model, checked for 
plausibility and completeness, and the according scrap 
properties F(n) are calculated. In the present article, pro-
duction data from a 60-ton EAF are used to demonstrate 
the model capabilities, including:
•  Furnace charge mix [kg].
•  Melt chemistry samples [wt. %].
•  Electric energy consumption [kWh].
•  Injected oxygen [Nm3].
•  Oxygen consumers (natural gas [Nm3], carbon 

[kg], etc.).
•  Tapping weight [kg].

The furnace operates with average injection rates of 
4 kg/ton carbon, 2.3 Nm3/ton natural gas, 97 Nm3/ton 

oxygen and consumes approximately 400 kWh/ton elec-
trical energy. The furnace operations also involve a hot 
heel practice, which is also included in the model. After 
calculation of the current scrap characteristics after each 
heat, a forecast is made to predict the properties of the 
next heat based on the last known scrap characteristics 
of the previous calculation. This enables the model to 
be constantly self-learning and adjusting the respective 
scrap characteristics in real time, allowing the evaluation 
of the change of the individual scrap characteristics as a 
function of time. 

Results and Discussion 
The calculation results obtained with the hybrid model 
described in the previous section are presented and 
discussed in this section. As mentioned earlier, the three 
main properties of scrap can be calculated using the 
developed model. These are the chemical composition, 
the metallic yield and the specific electrical energy. All 
of these parameters are important for a successful and 
proper optimization of the raw material utilization dur-
ing steelmaking. The latter is particularly important for 
steelmakers, where material and electricity costs per kilo-
gram of steel are in the same range, and even more so if 
electricity costs are very high.

Determination of the Scrap Composition 
First, using Cu as an example, the findings of calculations 
of the chemical composition of three commonly utilized 
scrap types (A, B and C) are addressed. Copper does not 
oxidize during oxygen blowing, making it easier to deter-
mine the Cu content of the individual scrap types and less 

Simplified mathematical representation of the situation to be modeled.

Figure 2
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dependent on whether a metallurgical model is included. 
However, because the benefits of the developed scrap 
analysis can be presented very clearly, it will be utilized 
as an example in the following. Furthermore, the inability 
to accurately determine the Cu content of scrap can result 
in significant quality issues and financial losses. This can 
clearly be seen in Fig. 3. The figure shows the results of 
300 heats. The solid lines represent the Cu value of the 
individual scrap types that are stored in the master data 
management and was previously used by the operators 
for the charge mix calculations. This value is 0.5 wt. % for 
Scrap A, 0.2 wt. % for Scrap B, and 0.1 wt. % for Scrap C.

The dots represent the calculated Cu values for each 
scrap for each heat. It is immediately evident that the 
scrap with the highest Cu content (Scrap A) has the larg-
est deviations/f luctuations from the master data value of 
0.5 wt. %. At a heat index of >200, the prediction value is 
almost 0.2 wt. % higher than the master data value. For 
Scrap B, the master data value and the predicted value 
are almost at the same level of 0.2 wt. % Cu. For Scrap C, 
the model shows a small variation over all 300 heats in 
the range of about ±0.1 wt. %, with the predicted values 
tending to be higher than the master data value. Before 
discussing the implications of these results, the reliability 
of the calculations should be demonstrated.

Diagram A of Fig. 4 shows the measured versus the 
calculated Cu content of the melt for all heats. The cal-
culation is based on constant master data values of the Cu 
content of each scrap type that is charged. It is easy to see 
that the calculated values have their mathematical limit 
at 0.5 wt. % Cu. However, Cu contents of up to 0.7 wt. % 
are measured in the melt, which already indicates that 
the constant master data values only ref lect reality to a 

limited extent. This is certainly nothing new and steel-
makers have learned to deal with it, mainly through the 
introduction of much smaller Cu limits (allowable grade-
specific maximums) as a safety buffer. It is also evident 
that for measured Cu contents <0.3 wt. %, the calculated 
values are in good agreement. This can be explained by 
the small variations of the Cu content in clean and well-
sorted scrap. 

Diagram B of Fig. 4 shows the same situation, but 
the calculation is based on the values predicted by the 
hybrid model (see Fig. 3). Especially for higher measured 
Cu values, the hybrid model leads to significantly bet-
ter predictions compared to the master data. Diagram 
C summarizes what can be seen at first glance from 
Charts A and B. In this graph, the prediction accuracy 
(absolute ± deviation from the measured value) is plotted 
on the x-axis, while the y-axis shows how many of the 
predicted values are within the corresponding ± devia-
tion. In the example shown, the calculations based on 
the master data can only predict 40% of the heats with an 
accuracy of 0.025 wt. % Cu (the ±0.025 wt. % deviation 
is also shown in diagrams A and B as red dashed lines). 
The developed model leads to a success rate of 65% (i.e., 
65% of all calculated heats are within ±0.025 wt. % Cu). 
Furthermore, the model can accurately predict approxi-
mately 90% of all heats with an accuracy of ±0.05 wt. % 
Cu. This is a significant improvement and demonstrates 
the potential of the model.

Determination of the Metallic Yield 
As already shown in Fig. 2, a distinction is made between 
physical and chemical yield. The physical yield is a scrap-
specific parameter and indicates the ratio of metallic to 

Copper content of different scrap types over a duration of 300 heats.

Figure 3
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nonmetallic components. This value is of great impor-
tance for the overall economic evaluation of the scrap 
in the context of purchasing, as the usually unavoidable 
amount of dust, dirt, oxides, etc., can be quantified. 

The chemical yield refers to the losses due to the EAF 
process and is quantified by the oxidation reactions. The 
integrated and fundamental metallurgical model is used 
for this purpose. An oxygen blowing model is used that 
calculates the oxygen distribution based on Gibbs ener-
gies. The model assumes that the oxygen injected into 
the metal bath reacts simultaneously with the elements. 
To distribute the amount of injected oxygen over the 
elements, the Gibbs free energy is calculated and propor-
tionalized. This ratio is then used to distribute the oxygen 
to the individual oxidation reactions. To account for the 

reaction rates controlled by the transfer mechanisms, the 
simplified Fick’s first law is introduced into the model. 

In summary, it is important to distinguish between 
a scrap-specific physical yield and a process-specific 
chemical yield. These two contributions together then 
give an overall yield. However, this differentiation is typi-
cally not being made for master data values. Fig. 5 shows 
the results of the model calculations, which are described 
in the following.

The lower curves should be considered first. These 
are the determined chemical, physical and total losses 
with the corresponding values on the right y-axis. It can 
be seen that the chemical losses, i.e., the proportion that 
has been oxidized, represents about 5%. The variation 
of the physical losses is much greater than the chemical 
losses, ranging from 6 to 10%, resulting in total losses 

Predicted vs. measured copper content of the melt using master data (a) and model results (b) as well as 
comparison of the prediction accuracy using the predicted model values and the master data values (c).

Figure 4

Comparison of the measured total yield with the predicted yield using master data and model results.

Figure 5

(a)	 (b)	 (c)
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between 10 and 15%. This corresponds to a typical yield 
of 85–90%, as shown in the upper part of the graph 
with the corresponding values on the left y-axis. These 
values agree reasonably well with the actual measured 
total yield. It is important to note that the exact hot heel 
amount cannot be determined accurately for each heat, 
which introduces a certain error in the determination of 
the physical yield. For the total yield calculation using 
the master data values for each scrap type, there are 
areas where the master data predicts higher yields that 
measured, e.g., heat index 120–160 or 170–220. In these 
areas, scrap types with high master data yields were used 
in the charge mix, indicating that the stored master data 
value cannot be correct.

Determination of the Specific Melting Energy 
The EAF process uses several sources of energy to melt 
the scrap. Most of the energy comes in the form of elec-
trical energy, with additional chemical energy contribu-
tions from the burners, carbon carriers and oxidation 
reactions. Typical values are 380–400 kWh/ton for the 
so-called useful energy (i.e., the energy contained in the 
molten steel), which represents approximately 45–60% of 
the total energy input.8

The energy required for melting is a thermodynamic 
quantity and can be determined from the phase-specific 
free energies (Gibbs energy) as a function of temperature. 
Iron-based thermodynamic data for these calculations 
are taken from literature.9,10 Considering the chemical 
composition of the scrap, calculated values are between 
350 and 360 kWh/ton. These values are roughly 10% 
smaller than the above-mentioned useful energy. This 
difference can be explained by the fact that with scrap 
(as already mentioned in the context of yield) not only the 
pure metallic part has to be heated and melted, but also 
oxides, dust, etc. Therefore, a scrap-specific energy factor 

was introduced into the model to account for this situa-
tion. As described previously for chemical composition 
and yield, this factor (and thus the scrap specific energy 
required for melting) can be determined using the hybrid 
model.

The calculated electrical energy requirement is 
compared with the actual energy consumed in Fig. 6. 
Diagram A shows the measured versus the calculated 
electric energy consumption for all heats. Diagram B 
reveals that 70% of the calculated heats using the model 
are within ± 20 kWh/ton.

Benefits and Implications 
Having information about how the properties of each 
individual scrap in the scrap yard change over time has 
substantial impact on various areas of steelmaking. For 
example, the information contained in Fig. 3 allows con-
clusions to be drawn about the risk of producing out-of-
specification heats when using certain scrap types. In this 
figure, scrap A would be categorized as a raw material 
with high compositional uncertainty, while scrap B can 
be considered as a material with high compositional sta-
bility. Combining this time-resolved data with the timing 
of scrap supply provides valuable information that can be 
used in a supplier evaluation process to check whether the 
delivered scrap quality is in conformity with the purchase 
specification. In case of nonconformities, this informa-
tion can provide negotiation power for the raw material 
purchasing department.

Fig. 7 shows a comparison of various charge mix 
recipes for a melt with max. 0.3 wt. % copper for dif-
ferent scenarios of steelmaking. Scenario a represents 
the standard charge mix for a defined steel grade based 
on predefined master data for each scrap type. This 
is the standard operating practice of most steelmakers. 

To account for the lack of 
exact knowledge of scrap 
properties, such standard 
charge mixes include a cer-
tain safety buffer to stay 
within the desired specifica-
tion limits of the respective 
steel grade. This, however, 
means that, for example, in 
the case of copper content, 
more clean scrap with low 
copper content is charged 
than is required, acting as 
a buffer if the dirty scrap 
contains more copper than 
expected. This, in turn, 
leads to higher material 
cost, as clean scrap is usu-
ally more expensive than 
scrap types with higher 
content of trace elements. 

Predicted vs. measured specific energy consumption using model results.

Figure 6
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The right chart of Fig. 7 shows the resulting costs for the 
different scenarios (material and energy costs). The costs 
resulting from the standard recipe using master data 
amount to EUR382/ton. The charge mixes of all other 
scenarios b–f were calculated using the Raw Material 
Optimization Model. This ensures that no matter how 
the scrap changes in properties from delivery to delivery, 
the most cost-effective charge mix is used.

Scenario b is based on the same master data of the 
individual scrap types and includes a safety buffer to 
remain below the specification limits but is the result 
of a cost-optimized charge calculation, considering not 
only the chemistry of the scrap but also raw material and 
energy costs. The resulting cost savings are significant 
and amount to EUR13/ton. These results have been 
achieved by using a higher proportion of the cheaper 
scrap A. However, as mentioned earlier, this scrap is a 
material with high compositional uncertainty. In other 
words, this charge mix (although calculated with a safety 
buffer) can only be used if the Cu content is known pre-
cisely and with certainty. 

In scenarios b–f, the real-time scrap properties from 
the raw material characterization model are used (instead 
of the master data). Scenario b serves as the reference 
scenario for all further comparisons. Scenarios c–f are 
based on varying copper content and metallic yield of 
scrap A according to the determined min and max values 
(see Figs. 3 and 5). 

From scenario c, it is evident that when scrap A only 
contains 0.4 wt. % copper instead of 0.5 wt. % as defined 
in the master data, a modification of the charge mix 
yields a cost reduction of –EUR5/ton compared to sce-
nario b. This is clear because even more of the cheapest 
scrap  A can be used. The proportion of this scrap has 
now increased to 68%.

On the contrary, scenario d shows that when the cop-
per content of scrap A increases to 0.8 wt. %, the charge 
recipe must be adjusted to avoid copper becoming out of 
specification. In this case, more clean scrap (i.e., scrap D) 
must be included in the charge mix to dilute the high 
amount of copper coming from scrap A. 

Scenarios e and f show the same results for changing 
metallic yield of scrap A.

This underlines that in order to improve raw mate-
rial utilization in steelmaking, a combined effort of raw 
material characterization and charge mix optimization 
is required to achieve a significant quality and cost 
advantage.

Conclusion 
Scrap quality determination and raw material optimiza-
tion are critical to the EAF-based steelmaking process. 
With 55% of the world’s available scrap being end-of-life 
scrap, the scrap properties and the reliability of these 
properties will play an increasingly important role in 
maintaining a well-controlled production process. To 
optimize the use of raw materials, it is essential to have 
accurate knowledge of the chemical composition, metal-
lic yield and specific energy consumption of each scrap 
type. Advanced material optimization software can pro-
vide answers to questions along the raw material value 
chain, such as supplier evaluation, scrap characterization, 
charging instructions, heat prediction and overall cost 
reduction. Current technologies face challenges in deter-
mining scrap properties due to heterogeneity, time and 
cost. Thus, a new on-line scrap quality prediction system 
was developed and introduced in the present work. 

It was pointed out that a comprehensive model must 
take into account the reality of raw material procurement, 
scrap supply, charge mix preparation and the smelting 

Impact of different scrap properties on the charge mix (left) and the resulting change in costs (right).

Figure 7
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process. To ref lect real-world conditions and opera-
tions, three models were combined in a hybrid modeling 
approach. The hybrid model combines the strengths of 
each approach and helps to handle complex systems. It 
calculates scrap-specific composition, metallic yield, and 
specific energy based on the measured melt composition 
and charged scrap type and mass. It is augmented with a 
metallurgical model to account for losses due to oxidation 
reactions, thus providing a distinction between chemical 
and physical yield. This approach differs significantly 
from traditional data-based models that rely solely on 
historical data.

The results presented for the chemical composition 
show that the scrap with the highest Cu content (end-of-
life scrap) has the largest deviations from the master data 
value. The predicted value is almost 0.2 wt. % higher 
than the master data value. The reliability of the calcula-
tions was demonstrated by comparing the measured and 
predicted values. Regarding metallic yield, the model 
distinguishes between chemical and physical losses. The 
physical yield is a scrap-specific parameter that indicates 
the ratio of metallic to nonmetallic components and is 
vital for the overall economic evaluation of the scrap. 
The chemical yield refers to the losses due to the oxygen 

blowing process, quantified by oxidation reactions. The 
results show that the chemical losses are about 5%, while 
the physical losses are between 6 and 10%, resulting in 
a typical total yield of 85–90%. In order to account for 
scrap-specific enthalpies, the model uses thermodynami-
cally determined values (thus taking into account the 
influence of chemical composition) and incorporates a 
scrap-specific energy factor. Using the measured and 
predicted electrical energy, it has been shown that 70% of 
the calculated heats are within ±20 kWh/ton, which is sig-
nificantly better than calculations based on scrap-specific 
energy values predicted by linear regression models.

In the Benefits and Implications section, it was clearly 
shown how advanced models in the software can be used 
to create optimized charge mixes, taking into account 
current conditions. This process ensures that the most 
cost-effective charge mix is used, regardless of how scrap 
properties change from delivery to delivery.

Summarizing, a new raw material characteriza-
tion model has been demonstrated that can be com-
bined with a charge mix optimization model to enable 
steelmakers a significantly improved cost- and quality- 
optimized production process, being able to quickly react 
to changing scrap properties and production conditions.
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